
Wasserbelastungen durch langlebige Giftstoffe

Vom Hafenbecken auf den Teller

Planetary boundaries – die Grenzen unseres Planeten

Chemische Verschmutzung überschreitet globales Sicherheitslevel

- Erste großangelegte Untersuchung zum globalen Verschmutzungsgrad
- Verschmutzungscocktail bedroht Stabilität planetarer Ökosysteme (auf die Menschen angewiesen sind)
- Besonders problematisch: Plastik, Pestizide, Antibiotika
- Schlussfolgerung: chemische Verschmutzung hat die planetare Grenze überschritten, d.h. instabile Umweltbedingungen für min. 10.000 Jahre

Welche Chemikalien sind im Hafenschlick?

Tabelle 7-1: Mittelwerte (2008 - 2014) der Schadstoffbelastungen von Sedimenten im BA 1 (Wedel)

											3-
											3- Jahresmittel
											wert Wedel
BA 1	Sedimentfang Wedel (Freigabebeprobungen)								RW1	RW2	2011-2013
			17.03.2009				07.03.2013	Sep 14	GÜ	BAK	
Trockenrückstand	Gew%	53	52	51	54	48					
Fraktion 20-63µm	Gew% TM	29	25	23	29	32	21	25			
Fraktion <20μm	Gew% TM		29	29	31	24	35	26			
Gesamtfraktion <63μm	Gew% TM	57	54	53	60	56	55	51			
Schwermetalle											
Arsen (in <20μm)	mg/kg TM	34	31	33	35	37	34	31	40	120	29
Blei (in <20μm)	mg/kg TM	73	86	92	83	88	75	73	90	270	73
Cadmium (in <20μm)	mg/kg TM	1,4	2,1	2,5	1,8	2,6	2,1	1,4	1,5	4,5	2,1
Chrom (in <20µm)	mg/kg TM	88	95	96	63	59	96	94	120	360	75
Kupfer (in <20µm)	mg/kg TM	52	62	69	54	66	69	57	30	90	101
Nickel (in <20μm)	mg/kg TM	45	45	47	39	40	46	45	70	210	46
Quecksilber (in <20µm)	mg/kg TM	0,96	1,4	1,6	1,0	1,3	1,3	1,1	0,7	2,1	1,2
Zink (in <20µm)	mg/kg TM	478	480	558	478	569	491	404	300	900	761
Kohlenwasserstoffe											
Kohlenwasserstoffe (in <63μm)	mg/kg TM	115	204	197	47	88	156	126	200	600	112
PAK-Summe 16 EPA (in <63µm)	mg/kg TM	2,1	1,6	1,9	1,2	1,6	1,6	1,2	1,8	5,5	2
Chlororganische Verbindungen											
Pentachlorbenzol (in <63µm)	μg/kg TM	1,1	1,8	2,6	0,91	1,2	1,2	1,5	1	3	2,1
Hexachlorbenzol (in <63µm)	μg/kg TM	4,6	10	9,6	5,1	6,5	5,7	5,4	1,8	5,5	12
Summe 7 PCB (in <63µm)	μg/kg TM	13	17	22	12	14	18	15	13	40	19
α-HCH (in <63μm)	μg/kg TM	0,37	0,84	0,77	0,39	0,44	0,6	0,6	0,5	1,5	0,68
γ-HCH (in <63μm)	μg/kg TM	0,19	0,93	0,8	0,14	0,17	0,2	0,2	0,5	1,5	0,25
p,p-DDE (in <63μm)	μg/kg TM	3,0	4,5	5,7	2,8	3,9	3,8	4,5	1	3	5,2
p,p-DDD (in <63μm)	μg/kg TM	7,5	10	16	7,7	9,7	15	14	2	6	12
p,p-DDT (in <63μm)	μg/kg TM	3,3	4,2	2,5	2,2	2,4	20,3 (2)	1,7	1	3	3,8
Organozinnverbindungen		,									,
Tributylzinn-Kation (in <2mm)	μg/kg TM	28	76	51	42	31	51	20	20	300	56
Phosphor ges. (in <2mm)	mg/kg TM	834	908	929	846	838	937		50		1662
Stickstoff ges. (in <2mm)	Gew% TM	0,18	0,21	0,21	0,22	0,25		728,6			0,4

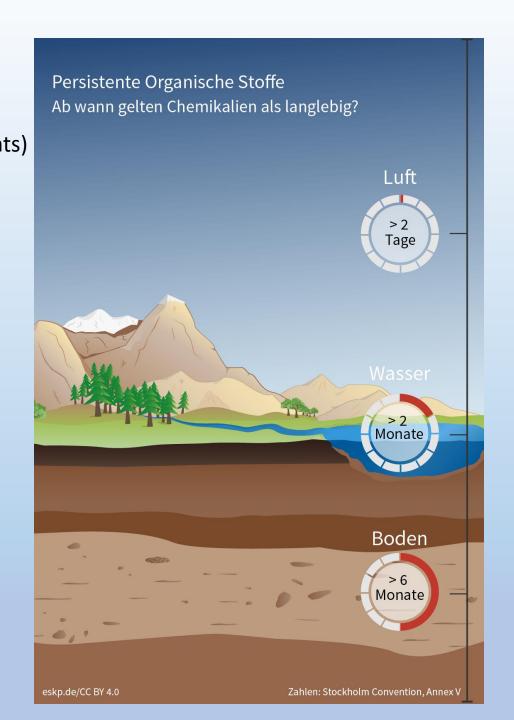
Quelle:

Bundesanstalt für Gewässerkunde

Auswirkungsprognose für die Unterbringung von Baggergut im Verbringstellenbereich VSB 730/740

Richtwerte (RB) nach GÜBAK

Welche Chemikalien sind im Hafenschlick?

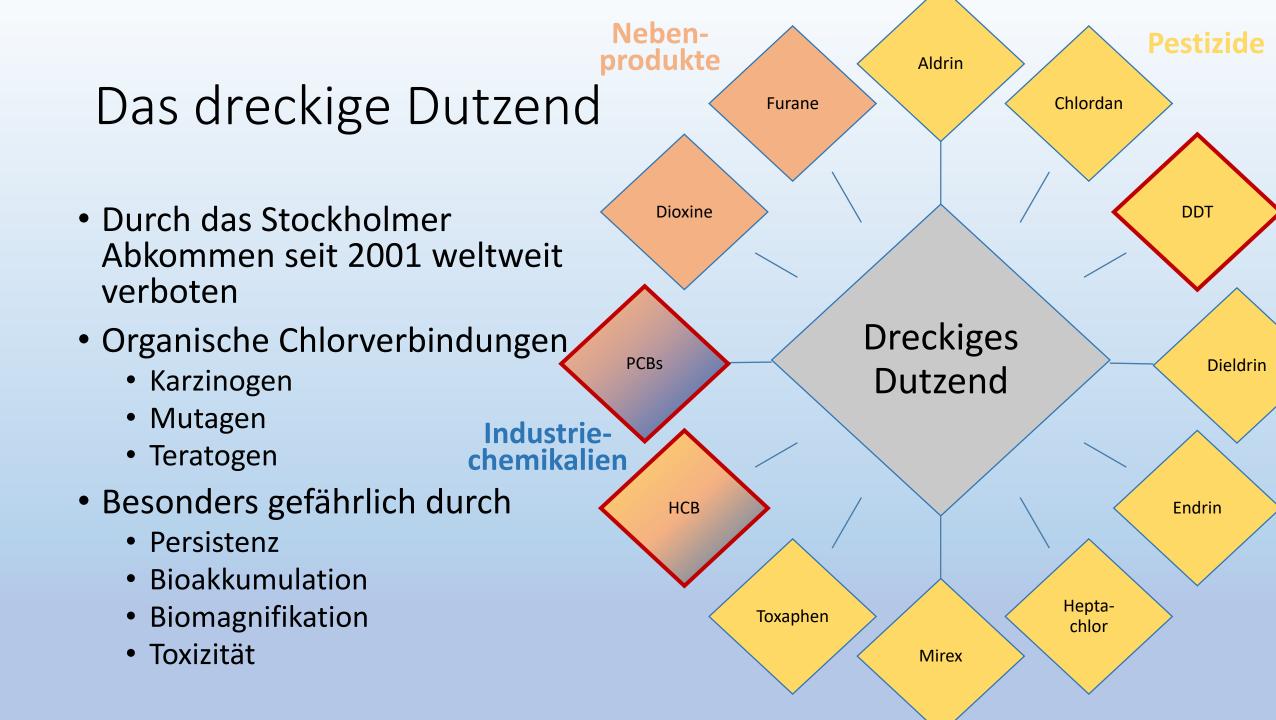

- Schwermetalle (Blei, Cadmium, Kupfer, Quecksilber, Zink)
- Kohlenwasserstoffe
- PAK
- Chlororganische Verbindungen (Hexachlorbenzol HCB, Pentachlorbenzol)
- PCB
- α-Hexachlorcyclohexan (α-HCH)
- Lindan (γ-Hexachlorcyclohexan)
- DDT & Metabolite (DDE, DDD)
- Tributylzinn
- Phosphor & Stickstoff

	persistent	toxisch	krebserregend	mutagen	reproduktionstox	fruchtschädigend	endokriner Disruptor	bioakkumilierend	biomagnifizierend
Blei	X	X	X		X	X	X	X	
Cadmium	X	X	X					X	X
Kupfer	X	X							
Quecksilber	X	X	X		X		X	X	X
Zink	X	X							
Kohlenwasserstoffe	(x)	(x)	(x)	(x)	(x)	(x)	(x)	(x)	(x)
PAK	X	X	X	X	X	X		X	
Hexachlorbenzol	X	X	X		X	X	X	X	X
Pentachlorbenzol	X	X	(x)	(x)		(x)	(x)	(x)	X
РСВ	X	X	X		X	X	X	X	X
α-Hexachlorcyclohexan	X	X	X	X	X			X	Х
Lindan	X		X				X	X	Х
DDT	X	X	X	X			X	X	X
DDE	X		X	X			X	X	
DDD	X		X				X		
Tributylzinn	X	X					X	X	

Persistente organische Schadstoffe (POPs: persistent organic pollutants)

- Verbleiben in der Umwelt
- Mobil (Luft, Wasser, Organismen)
- Sammeln sich in Organismen an (Bioakkumulation, Biomagnifikation)

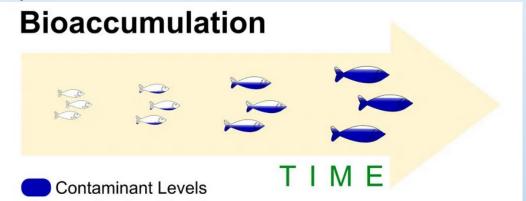
- Z.t. durch Stockholmer Abkommen geregelt
- Aber: Oft POPs in Produkten, da Regulierung zeitversetzt



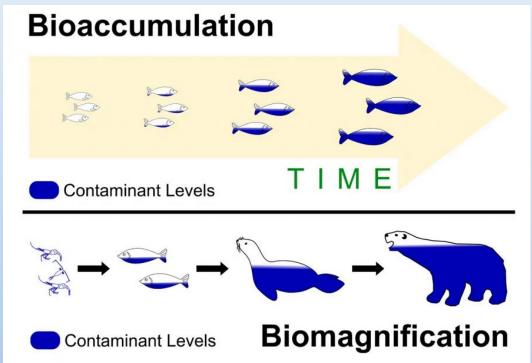
Persistente organische Schadstoffe (POPs: persistent organic pollutants)

- Jede:r trägt POPs im Fettgewebe (Körperlast, body-burden)
- Ebenso Fische, Vögel, Säugetiere
- Verunreinigen Nahrungsmittel
- Schädigen Menschen & Tiere (z.t. in sehr geringen Konzentrationen)
- Akkumulation in kälteren Regionen
 - →Freisetzung durch Klimawandel

Krankheiten & Störungen durch POPs:


- Krebs & Tumore (v.a. Weichteilsarkome, Non-Hotchkin-Lymphome, Brustkrebs, Pankreaskrebs, Akute Myeloische Leukämie)
- Neurologische Störungen (ADS, Verhaltensauffälligkeiten wie Aggression&Kriminalität, Lernstörungen, Gedächtnisstörungen)
- Immunsupression
- Fortpflanzungsstörungen (abnomale Spermien, Fehlgeburten, Frühgeburten, niedriges Geburtsgewicht, verändertes Geschlechterverhältnis, verkürzte Laktationszeit, Menstruationsstörungen)
- Weitere Erkrankungen (Typ-II-Diabetes, Endometriose, Hepatitis, Zirrhosen, Herz-Kreislauferkrankungen)

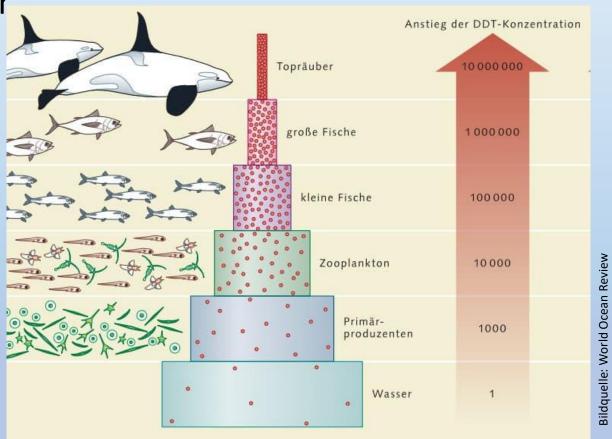
Bioakkumulation


- Ablagerung chemischer Substanzen im Körper
 - Hohe biologische Halbwertszeit
 - Lipophile Stoffe
 - Membrangängig
- Mit zunehmender Konzentration
- → schädliche Wirkungen wahrscheinlicher

Anreicherungen bis zu 100.000-fach

Bildquelle: Renovablesverdes

- Teilaspekt der Bioakkumulation
- Anreicherung von Schadstoffen über die Nahrung

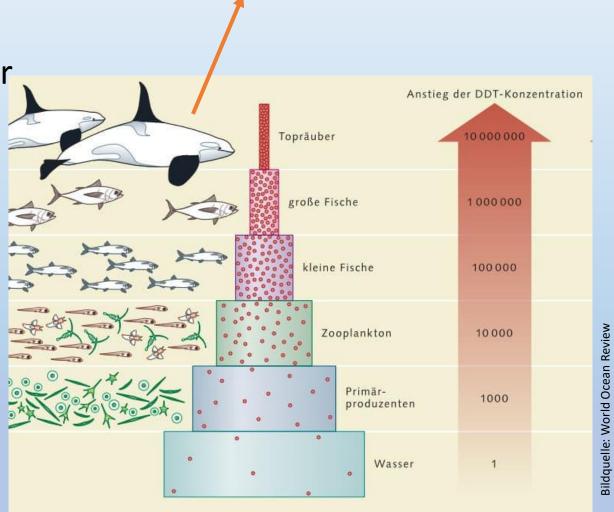

Bildquelle: Renovablesverdes

Teilaspekt der Bioakkumulation

Anreicherung von Schadstoffen über

die Nahrung

 D.h. Anreicherung entlang der Nahrungskette

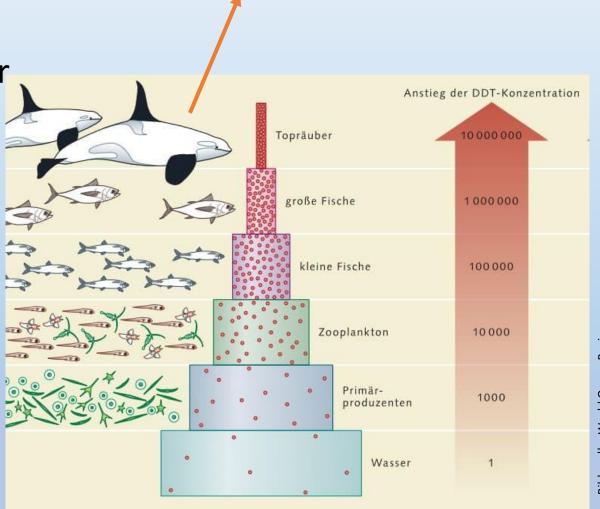


Teilaspekt der Bioakkumulation

Anreicherung von Schadstoffen über die Nahrung

• D.h. Anreicherung entlang der Nahrungskette

Gestörtes Immunsystem Unfruchtbarkeit

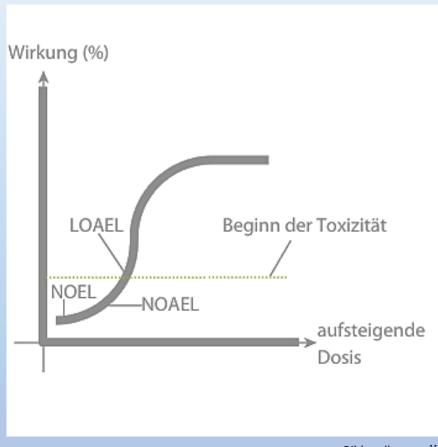

Teilaspekt der Bioakkumulation

Anreicherung von Schadstoffen über die Nahrung

 D.h. Anreicherung entlang der Nahrungskette

Gestörtes Immunsystem Unfruchtbarkeit

Schützen Grenzwerte?


- Vorstellung: Sicheres Level der Exposition
- Zugleich: Anspruch auf Freisetzung
- Klassisch Toxikologisch: Dosis-Wirkungsanalyse

NOEL = höchste Dosis, bei der noch keinerlei Effekte auf das Versuchstier zu beobachten sind.

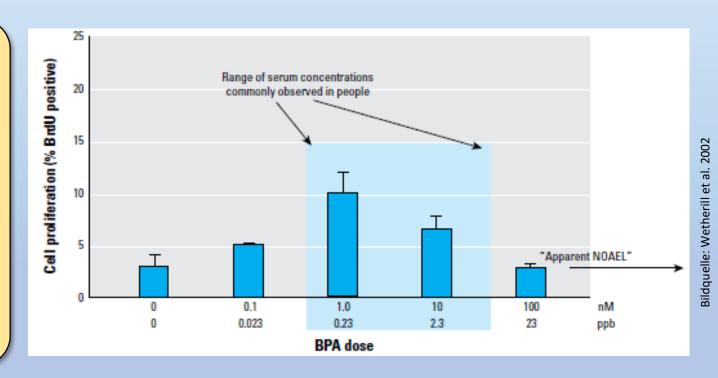
NOAEL = (No Observed Adverse Effect Level) = höchste Dosis, bei der noch kein negativer Effekt beobachtet wurde

LOAEL = (Lowest Observed Adverse Effect Level) = niedrigste

Dosis mit bereits auftretender Toxizität

Schützen Grenzwerte?

- Vorstellung: Sicheres Level der Exposition
- Zugleich: Anspruch auf Freisetzung
- Klassisch Toxikologisch: Dosis-Wirkungsanalyse


Probleme:

Niedrigdosiseffekt, zB in endokrinen Disruptoren

Kombinationswirkungen: Additive,

Synergistische Effekte

Bioakkumulation

Schützen Grenzwerte?

- Vorstellung: Sicheres Level der Exposition
- Zugleich: Anspruch auf Freisetzung
- Klassisch Toxikologisch: Dosis-Wirkungsanalyse

Probleme:

Niedrigdosiseffekt, zB in endokrinen Disruptoren

Kombinationswirkungen: Additive,

Synergistische Effekte

Bioakkumulation

Quellen und weiterführende Informationen

Vortrag VHS Delmenhorst: Umweltkrankheiten

_

Welche Einflüsse betreffen meine Gesundheit und die der Menschen weltweit? (Anmeldung: shorturl.at/cikBM)

Symposium:

Grenzwerte im Umwelt- und Gesundheitsschutz – kritische Betrachtungen

(7.5. 2022 im Haus der Wissenschaft, Bremen) shorturl.at/hFTV4

Aktueller Stand:
ChemTrust Bericht zu
Kombinationswirkungen

(pdf: shorturl.at/ruETV)

- Überschreitung der chemisch Belastungsgrenze des Planeten:
 - Outside the Safe Operating Space of the Planetary Boundary for Novel Entities. Persson et al. 2022 In Environ, Sci. Technol.
- Gesundheitsgefahren durch POPs:
 - Health and environmental effects of persistent organic pollutants. Alharbi et al. 2018 In Journal of Molecular Liquids
- Persistente Chemikalien und Meeressäuger:
 - PCB pollution continues to impact populations of orcas and other dolphins in European waters. Jepson et al. 2016 In Scientific Reports